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(Averages for 10 problems)

Domain Sufficient Conditions Subregion Incumbent
mn p SplitsSatisfied Eliminations Improvements
10 10 0 5.3 1.0 0.9 4.8

10 10 10 2.7 0.9 0.3 0.2
10 10 20 2.5 0.5 0.4 20.2
10 10 30 4.4 0.5 0.6 1.8
10 10 40 3.2 0.3 0.6 1.1

10 20 0 14.2 1.1 1.7 1.5
10 20 10 7.3 0.9 0.9 4.1
10 20 20 2.7 0.7 1.0 3.4
10 20 40 6.5 0.7 0.9 2.1

10 30 0 6.4 1.0 0.8 5.6
10 30 10 17.5 1.0 1.5 7.6
10 30 20 2.7 0.4 1.1 1.5

10 40 0 9.3 0.9 0.8 4.1
10 40 10 7.8 0.7 1.6 12.1
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branch and bound aspect of the method.  In addition, Table 5 lists the average num-

ber of times the sufficient conditions were satisfied, the average number of times

that a subregion was eliminated by the heuristic linear underestimation step, and

the average number of times that the incumbent solution was improved.

Finally, it should be noted that both algorithms have been useful in obtain-

ing solutions to problems which are better than the previously reported “global”

solutions.  In particular, the collection of global optimization of very difficult test

problems compiled by Pardalos and Floudas (1990) contains a number of prob-

lems of the form (GP).  The solutions reported in problems 2.1 through 2.7.4 have

all been confirmed by both the stochastic and deterministic approaches.  However,

Pardalos and Floudas (1990) report a “best known solution” ofϕ = -4105.28 with

corresponding vertex x (non-zero components only) of x4 = 0.995, x12 = 0.930, x16

= 7.412, x18 = 12.674, and x20 = 17.990 for problem 2.7.5, whereas both the sto-

chastic and deterministic methods discovered the global minimum function value

ϕ* = -4150.41 with corresponding vertex x* (non-zero components only) of x3 =

1.043, x11 = 1.747, x13 = 0.431, x16 = 4.433, x18 = 15.859, and x20 = 16.487.

Table 5

Deterministic Method Statistics



(Averages for 10 problems)

Global MinTrials Since Last
mn p TrialsLocal Minimawas Local Min #Local Min Found
10 10 0 261.0 25.0 4.9 41.8

10 10 10 247.0 23.6 4.9 35.3
10 10 20 219.0 20.8 6.4 31.0
10 10 30 190.0 17.9 6.5 40.9
10 10 40 159.0 14.8 3.7 40.8

10 20 0 992.0 98.1 5.2 38.6
10 20 10 874.0 86.3 8.9 44.5
10 20 20 671.0 66.0 7.4 41.9
10 20 40 505.0 49.4 8.7 41.3

10 30 0 2245.0 223.4 13.4 49.7
10 30 10 1808.0 179.7 22.8 38.1
10 30 20 1119.0 110.8 6.9 26.4

10 40 0 3937.0 392.6 8.1 48.2
10 40 10 2596.6 271.4 11.9 23.5

As described in section 2 above, the use of the bayesian stopping rule

involving only the number of local minima and the number of trials is very often

too conservative, and an additional test that allows termination of the method only

after 99% of the feasible region has been explored would be more practical.  In

fact, these computational results fully support this hypothesis since inall 140 prob-

lems tested, the stochastic method was stopped by this additional check on the

fraction of the domain explored.  This greatly decreases the overall solution time

since for a problem of size m = 10, n = 20, and p = 0, the total number of local min-

ima discovered is approximately 98 and the original bayesian stopping rule alone

would have required 19504 trials for termination.  The results from Table 4 indi-

cate that only 992 trials were needed using the combination of the two stopping

rules.

Table 5 presents a more detailed set of statistics for the deterministic

method.  For each set of problems of the same size, this table lists the average

number of domain splits required (in order to guarantee a global solution) by the



Table 3

Stochastic Method Deterministic Method

mn p Time (secs)LPs Pivots/LPTime (secs)LPs Pivots/LP
10 10 0 0.73 841.2 3.0 0.43 470.82.8

10 10 10 1.80 904.7 5.3 0.34 177.33.9
10 10 20 2.74 768.3 7.4 0.98 585.63.8
10 10 30 3.49 653.5 8.7 0.97 306.23.8
10 10 40 3.99 579.2 9.8 1.12 260.74.1

10 20 0 6.16 3719.5 4.3 6.59 5885.42.0
10 20 10 10.16 3370.7 6.0 68.83 79671.11.9
10 20 20 12.14 2739.3 7.1 1.13 524.72.9
10 20 40 15.19 1985.3 9.2 3.02 984.42.3

10 30 0 23.58 8640.1 5.3 2.16 1622.72.3
10 30 10 29.53 7619.0 6.3 5.80 3428.12.7
10 30 20 24.90 4599.1 7.3 2.12 937.22.8

10 40 0 62.76 15997.5 6.0 4.01 2418.71.4
10 40 10 54.50 10532.8 6.9 6.66 3960.51.4

Table 4 presents a more detailed set of statistics for the stochastic method.

For each set of problems of the same size, this table lists the average number of

random search directions required (i.e. trials) and the average number of local min-

ima found.  In addition, since the global minimum vertex is one of the local min-

ima, Table 4 also shows, on average, which local minimum turned out to be the

global one.  From this table it is apparent that the global minimum is detected rela-

tively early in the process, but the remaining trials are still required in order to sat-

isfy the bayesian stopping rules.  Finally, once the final local minimum vertex is

found, the stochastic method must still preform a number of local searches in order

to satisfy the stopping criteria.  The number of such trials is listed in the last col-

umn of Table 4.

Table 4

Stochastic Method Statistics



Time -- Stochastic Time -- Deterministic

(seconds) (seconds)

mn p min max avg min max avg

10 10 0 0.42 1.60 0.73 0.05 2.520.43

10 10 10 1.19 2.65 1.80 0.08 0.630.34
10 10 20 1.85 3.78 2.74 0.20 5.380.98
10 10 30 2.74 4.64 3.49 0.42 2.750.97
10 10 40 2.44 5.79 3.99 0.42 3.341.12

10 20 0 2.90 13.63 6.16 0.28 33.916.59
10 20 10 4.51 16.17 10.16 0.33 675.0068.83
10 20 20 7.16 19.05 12.14 0.39 2.251.13
10 20 40 7.51 25.13 15.19 1.21 4.973.02

10 30 0 10.39 40.29 23.58 0.32 5.952.16
10 30 10 17.81 59.17 29.53 0.42 23.525.80
10 30 20 9.48 46.06 24.90 0.74 7.792.12

10 40 0 16.67 99.14 62.76 1.15 9.934.01
10 40 10 18.69 99.86 54.50 1.14 21.636.66

It is clear form this table that in almost every case the deterministic method

solves fewer linear programs, requires fewer pivots per linear program, and takes

substantially less overall time to obtain a global solution than does the stochastic

method.  In two cases (n = 20 and p = 0; n = 30 and p = 10), the branch and bound

portion of the deterministic method had to perform an unusually large number of

domain splits in order to guarantee a global solution; hence, for these two cases the

number of linear programs solved and the overall solution time are much larger

than would otherwise be expected.  In fact, for n = 20 and p = 0, the stochastic

method turned out to be faster, on average, than the deterministic method.  Further-

more, the results cited for the deterministic method in the case n = 20 and p = 10

were almost entirely dominated by a single very difficult problem which required

675 seconds and 788467 linear programs to solve.  Excluding this particular prob-

lem, the average overall solution time for a problem of this size would have been

1.47 seconds for the deterministic method.



set of 10 problems.  These results indicate, as stated above, that the addition of

purely linear variables tends to make the problems somewhat easier as p begins to

dominate n.

Table 1

Number of Local Minima

m n p min max avg
10 10 0 13 57 25

10 10 10 18 33 24
10 10 20 16 28 21
10 10 30 13 22 18
10 10 40 9 23 15

10 20 0 48 217 98
10 20 10 44 141 86
10 20 20 43 103 66
10 20 40 24 83 49

10 30 0 106 381 223
10 30 10 108 356 180
10 30 20 44 200 111

10 40 0 116 587 393
10 40 10 87 600 271

Table 2 displays the minimum, maximum, and average CPU solution time

required for each algorithm on the same set of problems.  Table 3 presents averages

of the total time required (repeated from table 2), the total number of linear pro-

grams solved, and the average number of pivots per linear program.  In 138 out of

the 140 problems tested, the two methods obtained exactly the same global mini-

mum vertex.  For the two cases in which the stochastic method failed to find the

global minimum vertex, the vertex that it found differed in function value from the

true global minimum function value (as given by the deterministic method) in each

case by less than 2.5% (the exact relative errors were 2.5% and 0.06%).

Table 2



the global minimum to within any specified tolerance in a finite number of itera-

tions.

4  Computational Results

Computational results reported in Phillips, Rosen, and van Vliet (1992)

indicate that randomly generated concave quadratic problems for which the global

maximum is known to be interior to the polytope are among the most difficult test

problems available.  Hence, the class of separable test problems of the form (GP)

used for comparing the two methods were randomly generated concave quadratic

functions of the following form:

whereν is the unconstrained global maximum ofϕ(x), andλi < 0 for i=1,…,n1.  As

stated above, it has been observed (Phillips, Rosen, and van Vliet 1992) that for

problems with the global maximumν ∈ _, there exist significantly more local min-

ima than for problems of the same dimension with no restriction onν, hence these

problems should be more difficult to solve.  For this reason, all problems were gen-

erated in such a way thatν ∈ _.  In addition, a purely linear term of the form dty,

where d, y∈ Rp, was also added to the functionϕ(x).  Both algorithms can be eas-

ily extended to handle these purely linear variables, and their presence is expected

to make the problems somewhat easier when p dominates n (see table 1 below).

Over 140 test problems were used in the computational comparisons, and

all results were obtained on the Cray x-mp ea/464 supercomputer located at the

Minnesota Supercomputer Center in Minneapolis, MN.  For each of the methods,

the same set of 10 problems with dimensions of m = 10, n∈ {10, 20, 30, 40}, and

p ∈ {0, 10, 20, 30, 40} were tested.  Table 1 displays the minimum, maximum, and

average number of local minima, as determined by the stochastic method, for each



If the differenceϕ(x') - Γ(x') exceedsε and the optimality check fails, then

the following heuristic steps of the algorithm are performed.  The feasible region is

divided into 2n subregions Rlj (for l=1,…,n and j=1,2) by bisecting R in certain

specified directions.  Linear underestimating functionsΓlj(x) to ϕ(x) over thesub-

regions are then constructed and minimized over the original region _.  If the opti-

mal function values for the linear problems are denoted byΓlj and the

corresponding optimal solution points by xlj, and ifΓlj > ϕ(xlj) for either j = 1 or 2,

then Rlj can beeliminated from further consideration.  In addition to this domain

reduction process, these linear underestimating problems also provide improved

upper and lower bounds on the global minimum function value.  Furthermore, the

sufficient conditions test can again be performed and theε tolerance checked.  If

both termination tests fail, and as long as some subregion of the original hyperrect-

angle R is eliminated at each step, the linear underestimating process just

described is repeated on the smaller subregion.

If at some step no subregion can be eliminated and the current incumbent

solution vertex does not satisfy the sufficient conditions or theε tolerance, then the

remaining hyperrectangle R is bisected and the entire procedure is repeated on the

smaller hyperrectangles.  This part of the method is represents the branch and

bound aspect of the algorithm and provides for guaranteed termination at the glo-

bal minimum solution.  As before, for a more detailed discussion and the theoreti-

cal justifications of each of the above steps, including the sufficient conditions

theory, see Phillips and Rosen (1992).

The major drawback of this deterministic approach is that separability of

the objective function is required in order to make proper use of the sufficient con-

ditions test.  In addition, this approach does not produce anylocal minima except

for the final global minimum.  The main advantages of this approach are that it

provides bounds on the global minimum at every step, and it isguaranteed to find



disadvantage to this approach is that it does not provide bounds on the global min-

imum, nor is itguaranteed to find the global minimum.

3  The Deterministic Approach

The deterministic approach uses a combination of linear underestimating

subproblems, branch and bound techniques, and sufficient condition tests in order

to provide a guaranteed global solution to the problem (GP).  Since the feasible

domain _ is assumed to be non-empty and bounded, the first step of this method is

to construct a rectangular domain R which contains _.  And since the concave

function ϕ(x) is assumed to be separable, a linear functionΓ(x) which underesti-

matesϕ(x) over R and which agrees withϕ(x) atevery vertex of R can also be eas-

ily constructed.  Hence, the solution to the linear underestimating subproblem

provides a feasible point x' of _ such thatΓ(x') _ ϕ* _ ϕ(x').  Thus an initial pair of

lower and upper bounds is readily available.

The vertex x' is also a candidate for the global minimum, and if it happens

thatϕ(x') - Γ(x') _ ε for some small user specifiedε _ 0, then x' is usually accepted

as the global optimum solution.  In many of the previous computational methods

(Phillips and Rosen 1988; Phillips and Rosen 1990), the solution x' obtained from

this linear underestimating problem has, in fact, turned out to be the global opti-

mum solution to problem (GP).  Unfortunately, the differenceϕ(x') - Γ(x') usually

exceedsε for many iterations.  These iterations are required only to verify, by

improving the lower bound, that the point x' is indeed the global optimum solution.

Hence, the deterministic method applies a sufficient conditions test to determine if

the candidate vertex x' is indeed the global minimum vertex.  This optimality

check is described in detail in Phillips and Rosen (1992).



solving the linear problem

until two successive solution vertices zj-1.and zj do not differ.  Such a vertex

is guaranteed to be a Karush-Kuhn-Tucker point, and hence a candidate for the

global minimum (Phillips, Rosen, and van Vliet, 1992).  Since the global mini-

mum is unknown, the objective of this multistart method is to findall of the exist-

ing local minima for the problem.  Hence, this procedure is repeated once again

with another random search direction.

Unfortunately the total number of local minima is also unknown.  Thus, an

optimal bayesian estimate of the number of local minima is used to terminate the

method.  This bayesian stopping rule (Boender and Rinnooy Kan 1987) indicates

that, with very high probability, all of the local minima have been found; hence,

the one with the lowest function value will be the global minimum.  The use of this

stopping rule alone, as suggested by Boender and Rinnooy Kan (1987) and verified

by Phillips, Rosen, and van Vliet (1992), is very often too conservative and an

additional test incorporating the fraction of the feasible region explored would be

more practical.  Thus, the final step allows termination of the method only when

99% of the feasible region has been explored.  For a more detailed discussion and

the theoretical justifications of each of the above steps, including the stopping cri-

teria, see Phillips, Rosen, and van Vliet (1992).

It should be noted that this stochastic algorithm can be applied to a much

broader class of linearly constrained concave global minimization problems than

are described in this paper.  In fact, the concave functionϕ(x) need only be differ-

entiable over _ for this approach to be applicable (separability is only required for

the deterministic approach described in the next section).  In addition, this

approach produces all of thelocal minima in addition to the global minimum,

which in many circumstances are as useful as the global solution itself.  The main



The second method is a deterministic approach, described in detail in Phil-

lips and Rosen (1992), which attempts to use a combination of linear underesti-

mating subproblems, branch and bound techniques, and sufficient condition tests

in order to recognize a solution to the global minimization problem (GP).  In this

method, a linear function which underestimates the original concave function is

constructed, and the solution of the corresponding linear underestimating problem

provides both upper and lower bounds on the global minimum function value.  A

heuristic step is applied in an attempt to eliminate parts of the feasible region

which cannot contain the global minimum point.  In the worst case, this step will

fail to eliminate any regions, but typically the heuristic will allow the original fea-

sible region to be rapidly reduced to a much smaller polytope in which the global

minimum point must occur.  Branch and bound techniques are then used to reduce

the feasible region under consideration and decrease the difference between the

upper and lower bounds.  This procedure guarantees that anε-approximate solu-

tion (the relative error in the objective function is bounded by a user specified tol-

eranceε) will be obtained.  The use of sufficient conditions to recognize a global

minimum, applied whenever a new candidate for the global minimum vertex is

found, may significantly accelerate the solution for certain types of problems of the

form (GP).  If these sufficient conditions are not satisfied, the information can fre-

quently be used to obtain improved bounds and possibly eliminate part of the fea-

sible set from further consideration.

2  The Stochastic Approach

The stochastic approach consists of two main parts:  a global and a local

phase.  In the global phase, a random search direction u∈ Rn is selected and used

to obtain a starting point from which the local phase may begin.  The local phase

then attempts to find a local minimum by starting from this point and repeatedly



ences to many of these applications.  There has also been an active research effort

on computational methods for solving problem (GP), and many of these methods

are summarized in Pardalos and Rosen (1986) and Mockus (1989).  Most methods

are restricted to a certain class of concave functions, including quadratic functions

(Phillips and Rosen 1988), non-convex separable functions (Falk and Soland 1969,

Phillips and Rosen 1990), and factorable functions (McCormick 1976).  Only a

few methods have been developed for solving the general constrained concave

minimization problem (Tuy 1964, Falk and Hoffman 1976, Horst 1984).  Few of

these methods, however, seem to be suitable for the efficient computational solu-

tion of problems with more than 25 variables.  More recently, Hansen, Jaumard,

and Lu (1991) have proposed a method for more general classes of nonconvex

minimization problems which include concave problems as special cases.

This paper presents a computational comparison of two vastly different

methods for solving problem (GP).  The first of these methods is a stochastic

approach, described in detail in Phillips, Rosen, and van Vliet (1992), and is based

on a multistart technique first proposed by Rinnooy Kan and Timmer (1987).  This

technique repeatedly employs two phases during the solution process:  a global

and a local phase.  In the global phase, a random search direction is selected and

used to obtain a starting point from which the local phase may begin.  The local

phase then attempts to find a local minimum by starting from this point.  Since the

global minimum is generally unknown, the objective of a multistart method is to

find all of the existing local minima for the problem.  But, since the total number of

local minima is also unknown, an optimal bayesian estimate of the number of local

minima must be used to terminate the method.  This bayesian stopping rule

(Boender and Rinnooy Kan 1987) indicates that, with very high probability, all of

the local minima have been found; hence, the one with the lowest function value

will be the global minimum.



1  Introduction

This paper presents an in depth computational comparison of two methods

for solving linearly constrained concave global minimization problems.  In partic-

ular, the two methods presented are used to obtain a solutions to linearly con-

strained concave global minimization problems of the form

whereϕ(x) can be expressed in separable form.  That is,

and eachϕi(xi) is concave.  Additionally, _ = { x : Ax _ b, x _ 0 } is assumed to be

nonempty and bounded, and x∈ Rn, A ∈ Rmxn, and b∈ Rm.

Problem (GP) is a constrained combinatorial optimization problem for

which many well known problems are special cases.  For example, the concave

quadratic global minimization problem is a special case of problem (GP) for which

ϕ(x) = (1/2)xtQx + ctx where Q∈ Rnxn is symmetric and negative definite (ϕ(x) can

be transformed into separable form using the eigenstructure of Q).  This concave

quadratic global minimization problem is known to be NP-hard (Phillips 1988),

and hence it follows that problem (GP) is NP-hard.  From a computational view-

point, this means that, in the worst case, the computing time required to obtain a

solution will grow exponentially with the number of nonlinear variables.  An

important property of problem (GP), which is basic to many solution methods

(Phillips 1988), is that the global minimum point is always found at a vertex of the

convex polytope _.  For this reason, linear programming is an essential part of any

computational algorithm to solve problem (GP).

A substantial literature exists describing applications of this global minimi-

zation problem.  The monograph by Pardalos and Rosen (1987) contains refer-
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